4.8 Article

Characterization and Optimization of Multiplexed Quantitative Analyses Using High-Field Asymmetric-Waveform Ion Mobility Mass Spectrometry

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 6, 页码 4010-4016

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.8b05399

关键词

-

资金

  1. [K01 DK098285]
  2. [U24 HG006673 07]

向作者/读者索取更多资源

Multiplexed, isobaric tagging methods are powerful techniques to increase throughput, precision, and accuracy in quantitative proteomics. The dynamic range and accuracy of quantitation, however, can be limited by coisolation of tag-containing peptides that release reporter ions and conflate quantitative measurements across precursors. Methods to alleviate these effects often lead to the loss of protein and peptide identifications through online or offline filtering of interference containing spectra. To alleviate this effect, high-Field Asymmetric waveform Ion Mobility Spectroscopy (FAIMS) has been proposed as a method to reduce precursor coisolation and improve the accuracy and dynamic range of multiplex quantitation. Here we tested the use of FAIMS to improve quantitative accuracy using previously established TMT-based interference standards (triple knockout [TKO] and Human-Yeast Proteomics Resource [HYPER]). We observed that FAIMS robustly improved the quantitative accuracy of both high-resolution MS2 (HRMS2) and synchronous precursor selection MS3 (SPS-MS3)-based methods without sacrificing protein identifications. We further optimized and characterized the main factors that enable robust use of FAIMS for multiplexed quantitation. We highlight these factors and provide method recommendations to take advantage of FAIMS technology to improve isobaric-tag-quantification moving forward.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据