4.6 Article

Caspase-1 Inhibition Attenuates Hyperoxia-induced Lung and Brain Injury in Neonatal Mice

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2018-0192OC

关键词

inflammasome; neonatal lung; brain; hyperoxia; caspase-1

资金

  1. Project Newborn, University of Miami
  2. March of Dimes Foundation
  3. Micah Batchelor Award from the Batchelor Foundation

向作者/读者索取更多资源

Hyperoxia plays a key role in the development of bronchopulmonary dysplasia (BPD), a chronic lung disease of preterm infants. Infants with BPD often have brain injury that leads to long-term neurodevelopmental impairment, but the underlying mechanisms that control BPD-induced neurodevelopmental impairment remain unclear. Our previous studies have shown that hyperoxia-induced BPD in rodents is associated with lung inflammasome activation. Here, we tested the hypothesis that hyperoxia-induced lung and brain injury is mediated by inflammasome activation, and that inhibition of caspase-1, a key component of the inflammasome, attenuates hyperoxia-induced lung and brain injury in neonatal mice. C57/BL6 mouse pups were randomized to receive daily intraperitoneal injections of Ac-YVAD-CMK, an irreversible caspase-1 inhibitor, or placebo during exposure to room air or hyperoxia (85% O-2) for 10 days. We found that hyperoxia activated the NLRP1 inflammasome, increased production of mature IL-1 beta and upregulated expression of p30 gasdermin-D (GSDMD), the active form of GSDMD that is responsible for the programmed cell death mechanism of pyroptosis in both lung and brain tissue. Importantly, we show that inhibition of caspase-1 decreased IL-1(3 activation and p30 GSDMD expression, and improved alveolar and vascular development in hyperoxia-exposed lungs. Moreover, caspase-1 inhibition also promoted cell proliferation in the subgranular zone and subventricular zone of hyperoxia-exposed brains, resulting in lessened atrophy of these zones. Thus, the inflammasome plays a critical role in hyperoxia-induced neonatal lung and brain injury, and targeting this pathway may be beneficial for the prevention of lung and brain injury in preterm infants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据