4.7 Article

A flutter prediction method with low cost and low risk from test data

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 86, 期 -, 页码 542-557

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2019.01.043

关键词

Flutter prediction; Flutter test; Sub-critical response; System identification; Fluid-structure interaction; Flight flutter test

资金

  1. National Natural Science Foundation of China [11572252]
  2. Program for New Century Excellent Talents in University [NCET-13-0478]
  3. Seed Foundation of Innovation and Creation for Graduate Student in Northwestern Polytechnical University [Z2016002]

向作者/读者索取更多资源

The most common approach to flight flutter testing is to track estimated modal damping ratios of an aircraft over a number of fight conditions. However, the risk is inevitable when this method is utilized since the aircraft must fly near the flutter boundary. In this paper, a method with low cost and low risk for flutter boundary prediction is proposed. Based on structural modal parameters from the ground vibration test (GVT) and the structural response at the sub-critical speed, the generalized aerodynamic force coefficient vector can be solved. The generalized displacement vector is designed as the input and the generalized aerodynamic force coefficient vector as the output. System identification is used to construct the reduced-order aerodynamic model. The aeroelastic model based on experimental results can be constructed by coupling the structural motion equation and the aerodynamic equation in state space. Analyzing the characteristics of the fluid-structure coupling system changing with the dynamic pressure, the flutter onset behaviors can be solved by the eigenvalue method. Wind tunnel tests confirm that this method only needs one wind-on test at the sub-critical speed to predict the flutter onset with a certain precision even the reference dynamic pressure is far from the flutter critical point. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据