4.7 Article

Structure and stability of nanofluid films wetting solids: An overview

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cis.2018.12.001

关键词

Aqueous nanofilm; Solid; Structure; Stability; Free energy

向作者/读者索取更多资源

When an air bubble or an oil droplet in a nanofluid (liquid containing dispersed nanoparticles) approaches a solid surface, a nanofluid film is formed between the bubble or drop and a solid substrate. The nanoparticles confined in the film surfaces tend to self-layer and the film thins in a stepwise manner. The wetting behavior and film stability criteria valid for the classical molecularly thin films cannot be applied to nanofilm. Here we present an overview of the structure and stability of multilayer nanofilms wetting solid surfaces. We first present a brief review of the classical concept of molecular films wetting solid, and then we discuss the nanofluid film structure evolution as determined by the in-layer radial distribution function versus nanofilm's number of layers. The role of the particle volume fraction, size and polydispersity on the layering phenomenon is highlighted. The stability of the nanofilm, that is its layer-by-layer thinning is elucidated by the presence of particle voids or dislocations. We calculated the free energy of the nanofilm on a solid surface based on nanofilm osmotic pressure. We independently verified it by the direct measurement of the nanofilm-meniscus contact angle using reflected light interferometry. Finally, we present some practical applications of a wetting aqueous film for oily soil removal from a solid surface and the nanofilm displacing an oil phase from a capillary as in an enhanced oil recovery operation. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据