4.8 Article

Expandable Immunotherapeutic Nanoplatforms Engineered from Cytomembranes of Hybrid Cells Derived from Cancer and Dendritic Cells

期刊

ADVANCED MATERIALS
卷 31, 期 18, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900499

关键词

fused cells; homotypic targeting; hybrid cytomembrane; immunotheraputic platform; photodynamic therapy

资金

  1. National Key Research and Development Program of China [2016YFC1100703]
  2. National Natural Science foundation of China [51690152, 51533006, 21721005, 21374085]

向作者/读者索取更多资源

Using the cytomembranes (FMs) of hybrid cells acquired from the fusion of cancer and dendritic cells (DCs), this study offers a biologically derived platform for the combination of immunotherapy and traditional oncotherapy approaches. Due to the immunoactivation implicated in the cellular fusion, FMs can effectively express whole cancer antigens and immunological co-stimulatory molecules for robust immunotherapy. FMs share the tumor's self-targeting character with the parent cancer cells. In bilateral tumor-bearing mouse models, the FM-coated nanophotosensitizer causes durable immunoresponse to inhibit the rebound of primary tumors post-nanophotosensitizer-induced photodynamic therapy (PDT). The FM-induced immunotherapy displays ultrahigh antitumor effects even comparable to that of PDT. On the other hand, PDT toward primary tumors enhances the immunotherapy-caused regression of the irradiation-free distant tumors. Consequently, both the primary and the distant tumors are almost completely eliminated. This tumor-specific immunotherapy-based nanopIatform is potentially expandable to multiple tumor types and readily equipped with diverse functions owing to the flexible nanoparticle options.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据