4.8 Article

Dual-Phase Single-Ion Pathway Interfaces for Robust Lithium Metal in Working Batteries

期刊

ADVANCED MATERIALS
卷 31, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201808392

关键词

lithium-metal anodes; rechargeable batteries; single-ion pathways; solid electrolyte interphase

资金

  1. National Key Research and Development Program [2016YFA0202500]
  2. National Natural Science Foundation of China [21776019, 21825501, 21805161]
  3. Beijing Natural Science Foundation [L182021]
  4. Beijing Key Research and Development Plan [Z181100004518001]

向作者/读者索取更多资源

The lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions. Herein, a robust dual-phase artificial interface is constructed, where not only the single-ion-conducting nature, but also high mechanical rigidity and considerable deformability can be fulfilled simultaneously by the rational integration of a garnet Al-doped Li6.75La3Zr1.75Ta0.25O12-based bottom layer and a lithiated Nafion top layer. The as-constructed artificial solid electrolyte interphase is demonstrated to significantly stabilize the repeated cell charging/discharging process via regulating a facile Li-ion transport and a compact Li plating behavior, hence contributing to a higher coulombic efficiency and a considerably enhanced cyclability of lithium metal batteries. This work highlights the significance of rational manipulation of the interfacial properties of a working Li metal anode and affords fresh insights into achieving dendrite-free Li deposition behavior in a working battery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据