4.8 Article

Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes

期刊

ADVANCED MATERIALS
卷 31, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900009

关键词

cathodes; lithium-sulfur batteries; niobium carbide; spore carbon; trichoderma

资金

  1. National Natural Science Foundation of China [51772272, 51728204]
  2. Fundamental Research Funds for the Central Universities [2018QNA4011]
  3. Qianjiang Talents Plan D [QJD1602029]
  4. Startup Foundation for Hundred-Talent Program of Zhejiang University

向作者/读者索取更多资源

Tailored construction of advanced carbon hosts is playing a great role in the development of high-performance lithium-sulfur batteries (LSBs). Herein, a novel N,P-codoped trichoderma spore carbon (TSC) with a bowl structure, prepared by a trichoderma bioreactor and annealing process is reported. Moreover, TSC shows excellent compatibility with conductive niobium carbide (NbC), which is in situ implanted into the TSC matrix in the form of nanoparticles forming a highly porous TSC/NbC host. Importantly, NbC plays a dual role in TSC for not only pore formation but also enhancement of conductivity. Excitingly, the sulfur can be well accommodated in the TSC/NbC host forming a high-performance TSC/NbC-S cathode, which exhibits greatly enhanced rate performance (810 mAh g(-1) at 5 C) and long cycling life (937.9 mAh g(-1) at 0.1 C after 500 cycles), superior to TSC-S and other carbon/S counterparts due to the larger porosity, higher conductivity, and better synergetic trapping effect for the soluble polysulfide intermediate. The synergetic work of porous the conductive architecture, heterodoped N&P polar sites in TSC and polar conductive NbC provides new opportunities for enhancing physisorption and chemisorption of polysulfides leading to higher capacity and better rate capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据