4.8 Article

Synthetic Hilbert Space Engineering of Molecular Qudits: Isotopologue Chemistry

期刊

ADVANCED MATERIALS
卷 31, 期 26, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201806687

关键词

Hilbert space; molecular spintronics; quantum algorithm; quantum computing

向作者/读者索取更多资源

One of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. Among others, an important challenge to be resolved on the way to such breakthrough technology concerns the scalability of the available Hilbert space. Recently, proof-of-principle experiments were reported, in which the implementation of quantum algorithms (the Grover's search algorithm, iSWAP-gate, etc.) in a single-molecule nuclear spin qudit (with d = 4) known as (TbPc2)-Tb-159 was described, where the nuclear spins of lanthanides are used as a quantum register to execute simple quantum algorithms. In this progress report, the goal of linear and exponential up-scalability of the available Hilbert space expressed by the qudit-dimension d is addressed by synthesizing lanthanide metal complexes as quantum computing hardware. The synthesis of multinuclear large-Hilbert-space complexes has to be carried out under strict control of the nuclear spin degree of freedom leading to isotopologues, whereby electronic coupling between several nuclear spin units will exponentially extend the Hilbert space available for quantum information processing. Thus, improved multilevel spin qudits can be achieved that exhibit an exponentially scalable Hilbert space to enable high-performance quantum computing and information storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据