4.8 Article

Multicore-Shell Bi@N-doped Carbon Nanospheres for High Power Density and Long Cycle Life Sodium- and Potassium-Ion Anodes

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 13, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201809195

关键词

bismuth; high power density; multicore-shell; potassium-ion batteries; sodium-ion batteries

资金

  1. National Key R&D Research Program of China [2018YFB0905400]
  2. National Natural Science Foundation of China [51622210, 51872277]
  3. Fundamental Research Funds for the Central Universities [WK3430000004]
  4. DNL cooperation Fund, CAS [DNL180310]

向作者/读者索取更多资源

Bismuth (Bi) is an attractive material as anodes for both sodium-ion batteries (NIBs) and potassium-ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g(-1)) and high volumetric capacity (3800 mAh L-1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore-shell structured Bi@N-doped carbon (Bi@N-C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N-doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N-C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g(-1) after 2000 cycles at 10 A g(-1)) and KIBs (152 mAh g(-1) at 100 A g(-1)). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据