4.8 Article

Combustion Synthesized Zinc Oxide Electron-Transport Layers for Efficient and Stable Perovskite Solar Cells

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201900265

关键词

combustion synthesize; electron-transporting layer; intrinsic passivation; perovskite solar cell; zinc oxide

资金

  1. Northwestern University LEAP Center, US Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]
  2. Northwestern UniversityMRSEC [NSFDMR-1720139]
  3. Flexterra Corp.
  4. MRSEC program [NSFDMR-1720139]
  5. International Institute for Nanotechnology (IIN)
  6. Keck Foundation
  7. State of Illinois
  8. Shenzhen Peacock Plan project [KQTD20140630110339343]
  9. National Key R&D Program of China [2018YFB0407100-02]
  10. Foundation for Innovation Research Groups of the National Natural Science Foundation of China (NSFC) [61421002]
  11. Foundation of NSFC [61675041, 51703019]
  12. China Scholarship Council [201706070042]

向作者/读者索取更多资源

Perovskite solar cells (PSCs) have advanced rapidly with power conversion efficiencies (PCEs) now exceeding 22%. Due to the long diffusion lengths of charge carriers in the photoactive layer, a PSC device architecture comprising an electron-transporting layer (ETL) is essential to optimize charge flow and collection for maximum performance. Here, a novel approach is reported to low temperature, solution-processed ZnO ETLs for PSCs using combustion synthesis. Due to the intrinsic passivation effects, high crystallinity, matched energy levels, ideal surface topography, and good chemical compatibility with the perovskite layer, this combustion-derived ZnO enables PCEs approaching 17-20% for three types of perovskite materials systems with no need for ETL doping or surface functionalization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据