4.7 Article

Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches

期刊

ACTA MATERIALIA
卷 166, 期 -, 页码 335-345

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.12.045

关键词

Materials informatics; Convolutional neural networks; Deep learning; Localization; Structure-property linkages

资金

  1. AFOSR [FA9550-12-1-0458]
  2. NIST [70NANB14H012, 70NANB14H191]
  3. NSF [CCF-1409601]
  4. DOE [DESC0007456, DESC0014330]
  5. Northwestern Data Science Initiative

向作者/读者索取更多资源

Data-driven methods are attracting growing attention in the field of materials science. In particular, it is now becoming clear that machine learning approaches offer a unique avenue for successfully mining practically useful process-structure-property (PSP) linkages from a variety of materials data. Most previous efforts in this direction have relied on feature design (i.e., the identification of the salient features of the material microstructure to be included in the PSP linkages). However due to the rich complexity of features in most heterogeneous materials systems, it has been difficult to identify a set of consistent features that are transferable from one material system to another. With flexible architecture and remarkable learning capability, the emergent deep learning approaches offer a new path forward that circumvents the feature design step. In this work, we demonstrate the implementation of a deep learning feature-engineering-free approach to the prediction of the microscale elastic strain field in a given three-dimensional voxel-based microstructure of a high-contrast two-phase composite. The results show that deep learning approaches can implicitly learn salient information about local neighborhood details, and significantly outperform state-of-the-art methods. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据