4.7 Article

Dislocation evolution at a crack-tip in a hexagonal close packed metal under plane-stress conditions

期刊

ACTA MATERIALIA
卷 164, 期 -, 页码 25-38

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2018.10.022

关键词

Crack propagation; EBSD; Geometrically necessary dislocations; FEM

资金

  1. NSERC/UNENE Industrial Research Chair in Nuclear Materials at Queen's

向作者/读者索取更多资源

Understanding the stress state and microstructural features at a growing crack-tip is critical to understanding the failure mechanisms of engineering structures. To investigate the strain and dislocation evolution at a crack-tip, electron backscatter diffraction and geometrically necessary dislocation analysis were performed on fully annealed zirconium foils at room temperature. Different levels of macroscopic plastic strain were applied: 0.0%, 0.22%, 0.84%, 1.2%. Based on their different Burgers vectors and line vectors, prismatic , basal , screw , screw and pyramidal geometrically necessary dislocation densities were estimated during crack blunting and subsequent propagation. Most of the plastic deformation was accommodated by screw and pyramidal dislocations. Screw dislocations were found to be dominant over the as might be expected. Instead of twinning, pyramidal slip accommodated the strain along the c-axis caused by contraction at the crack-tip. Dislocation densities at the crack-tip were plotted according to the angle relative to the applied tension direction and the distance from the tip, and were compared with plastic strains simulated from a 3D static finite element model. Crack-tip singularity was observed and total geometrically necessary dislocation densities were in qualitatively good agreement with the equivalent plastic strain distribution predicted by the finite element method (FEM). (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据