4.8 Article

Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment

期刊

ACS NANO
卷 13, 期 3, 页码 3206-3217

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b08785

关键词

manganese ferrite nanoparticles; oxygen generation; macrophage polarization; rheumatoid arthritis; nanomedicine

资金

  1. Research Center Program of Institute for Basic Science in Republic of Korea [IBS-R006-D1]
  2. National Research Foundation of Korea [2017R1A2B3005842]
  3. Space Core Technology Development Program [2017M1A3A3A02016782]

向作者/读者索取更多资源

Poor O-2 supply to the infiltrated immune cells in the joint synovium of rheumatoid arthritis (RA) up-regulates hypoxia-inducible factor (HIF-1 alpha) expression and induces reactive oxygen species (ROS) generation, both of which exacerbate synovial inflammation. Synovial inflammation in RA can be resolved by eliminating pro-inflammatory M1 macrophages and inducing anti-inflammatory M2 macrophages. Because hypoxia and ROS in the RA synovium play a crucial role in the induction of Ml macrophages and reduction of M2 macrophages, herein, we develop manganese ferrite and ceria nanoparticle-anchored mesoporous silica nanoparticles (MFC-MSNs) that can synergistically scavenge ROS and produce O-2 for reducing M1 macrophage levels and inducing M2 macrophages for RA treatment. MFC-MSNs exhibit a synergistic effect on O-2 generation and ROS scavenging that is attributed to the complementary reaction of ceria nanoparticles (NPs) that can scavenge intermediate hydroxyl radicals generated by manganese ferrite NPs in the process of O-2 generation during the Fenton reaction, leading to the efficient polarization of M1 to M2 macrophages both in vitro and in vivo. Intra-articular administration of MFC-MSNs to rat RA models alleviated hypoxia, inflammation, and pathological features in the joint. Furthermore, MSNs were used as a drug-delivery vehicle, releasing the anti-rheumatic drug methotrexate in a sustained manner to augment the therapeutic effect of MFC-MSNs. This study highlights the therapeutic potential of MFC-MSNs that simultaneously generate O-2 and scavenge ROS, subsequently driving inflammatory macrophages to the anti-inflammatory subtype for RA treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据