4.8 Article

Manifestation of Kinetic Inductance in Terahertz Plasmon Resonances in Thin-Film Cd3As2

期刊

ACS NANO
卷 13, 期 4, 页码 4091-4100

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b08649

关键词

Dirac semimetals; terahertz; plasmonics; kinetic inductance; ultrafast carrier dynamics

资金

  1. NSF MRSEC program at the University of Utah [DMR 1121252]
  2. NSF CAREER Award [1351389]
  3. College of Engineering, Office of the Vice President for Research
  4. Utah Science Technology and Research (USTAR) initiative of the State of Utah

向作者/读者索取更多资源

Three-dimensional (3D) semimetals have been predicted and demonstrated to have a wide variety of interesting properties associated with their linear energy dispersion. In analogy to two-dimensional (2D) Dirac semimetals, such as graphene, Cd3As2 has shown ultrahigh mobility and large Fermi velocity and has been hypothesized to support plasmons at terahertz frequencies. In this work, we experimentally demonstrate synthesis of high quality large-area Cd3As2 thin films through thermal evaporation as well as the experimental realization of plasmonic structures consisting of periodic arrays of Cd3As2 stripes. These arrays exhibit sharp resonances at terahertz frequencies with associated quality factors (Q) as high as similar to 3.7 (at 0.82 THz). Such spectrally narrow resonances can be understood on the basis of a long momentum scattering time, which in our films can approach similar to 1 ps at room temperature. Moreover, we demonstrate an ultrafast tunable response through excitation of photoinduced carriers in optical pump/terahertz probe experiments. Our results evidence that the intrinsic 3D nature of Cd3As2 might provide for a very robust platform for terahertz plasmonic applications. Moreover, the long momentum scattering time as well as large kinetic inductance in Cd3As2 also holds enormous potential for the redesign of passive elements such as inductors and hence can have a profound impact in the field of RF integrated circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据