4.8 Article

Effect of Interfacial Interaction on the Conformational Variation of Poly(vinylidene fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 14, 页码 13665-13675

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b22586

关键词

poly(vinylidene fluoride); graphene oxide; conformation; toughness; nanocomposite

资金

  1. National Research Foundation of Korea (NRF) [NRF-2016R1A2B4007452, NRF-2015R1A2A1A10054152]

向作者/读者索取更多资源

Poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) nanocomposite fibers were dry-jet wet spun at the GO concentrations of 0, 1, and 2 wt % with respect to the polymer. The as-spun fibers were drawn in the draw ratio (DR) range of 2-6.5, and the correlation between the PVDF chain conformation and the mechanical properties of the fibers upon drawing has been studied by two-dimensional correlation spectroscopy of Fourier-transformed infrared, wide-angle X-ray diffraction, differential scanning calorimetry, and tensile testing. The PVDF/GO nanocomposite fibers exhibited that the mobile PVDF crystals due to the conformational defects and kinks were nucleated because of the polar interaction between PVDF chains and functional groups of GO, whereas the control PVDF fiber showed the conventional conversion of crystal polymorphs (alpha and gamma phases to beta phase). As a result, the nanocomposite fiber showed dramatically improved toughness (enhanced by 1123% at a DR of 2 and 120% at a DR of 6.5) as compared to that of the control fiber. Furthermore, the tensile strength and modulus of the PVDF/GO (2 wt %) fiber were 394 MPa and 4.6 GPa, respectively, whereas those of the control PVDF fiber were 295 MPa and 3.9 GPa, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据