4.8 Article

Kirkendall Growth and Ostwald Ripening Induced Hierarchical Morphology of Ni-Co LDH/MMoSx (M = Co, Ni, and Zn) Heteronanostructures as Advanced Electrode Materials for Asymmetric Solid-State Supercapacitors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 12, 页码 11555-11567

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b02978

关键词

Kirkendall growth; Ostwald ripening; Ni-Co LDH/MMoSx heteronanostructures; solid-state supercapacitors; specific energy

资金

  1. Basic Research Laboratory Program via National Research Foundation (NRF), of the Ministry of Science and ICT of the Republic of Korea [2014R1A4A1008140]
  2. Nano-material Technology Development Program via National Research Foundation (NRF), of the Ministry of Science and ICT of the Republic of Korea [2016M3A7B4900117]

向作者/读者索取更多资源

By changing the mixed metal sulfide composition, morphology tuning of an active electrode material can be possible, which can have a huge impact on its electrochemical performance. Here, effective morphology tuning of Ni-Co layered double hydroxide (LDH)/MMoSx (M = Co, Ni, and Zn) heteronanostructures is demonstrated by varying the composition of MMoSx. Taking advantage of the benefits associated with Kirkendall growth and Ostwald ripening, tunable morphologies were successfully achieved. Among the Ni-Co LDH/MMoSx (M = Co, Ni, and Zn) heteronanostructures, a Ni-Co LDH/NiMoSx core-shell structured electrode delivered a high specific capacity of 404 mAh g(-1) at 3 mA cm(-2) and an extraordinary cycling stability (after 10 000 cycles) of 93.2% at 50 mA In addition, an asymmetric supercapacitor (ASC) device coupled with Ni-Co LDH/NiMoSx as the cathode and Fe2O3/reduced graphene oxide as the anode exhibited excellent cell capacity and extraordinary cycling stability. Moreover, the ASC device provided a very high specific energy of 72.6 Wh kg(-1) at a specific power of 522.7 W kg(-1) and maintained the specific power of 23.5 Wh kg(-1) at 5357.6 W kg(-1), demonstrating its high applicability to energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据