4.8 Article

Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 10, 页码 9696-9701

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b00711

关键词

alkaline membrane electrolyzer; phenyl oxidation; phenyl adsorption; anion exchange ionomer; durability; density functional theory

资金

  1. HydroGEN Advanced Water Splitting Materials Consortium
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]
  4. U.S. Department of Energy [89233218CNA000001]

向作者/读者索取更多资源

The durability of alkaline anion exchange membrane (AEM) electrolyzers is a critical requirement for implementing this technology in cost-effective hydrogen production. Here, we report that the electrochemical oxidation of the adsorbed phenyl group (found in the ionomer) on oxygen evolution catalysts produces phenol, which may cause performance deterioration in AEM electrolyzers. In-line H-1 NMR kinetic analyses of phenyl oxidation in a model organic cation electrolyte shows that catalyst type significantly impacts the phenyl oxidation rate at an oxygen evolution potential. Density functional theory calculations show that the phenyl adsorption is a critical factor determining the phenyl oxidation. This research provides a path for the development of more durable AEM electrolyzers with components that can minimize the adverse impact induced by the phenyl group oxidation, such as the development of novel ionomers with fewer phenyl moieties or catalysts with less phenyl-adsorbing character.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据