4.8 Article

Micro-/Nanoscale Approach for Studying Scale Formation and Developing Scale-Resistant Surfaces

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 7, 页码 7330-7337

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b18523

关键词

scaling; iCVD polymer coatings; QCM; MFP; surface energy; adhesion

资金

  1. Kuwait-MIT Center for Natural Resources and the Environment (CNRE) - Kuwait Foundation for the Advancement of Sciences (KFAS)
  2. University of Toledo

向作者/读者索取更多资源

Blockage of pipelines due to accretion of salt particles is detrimental in desalination and water-harvesting industries as they compromise productivity, while increasing maintenance costs. We present a micro-/nanoscale approach to study fundamentals of scale formation, deposition, and adhesion to engineered surfaces with a wide range of surface energies fabricated using the initiated chemical vapor deposition method. Silicon wafers and steel substrates are coated with poly(1H,1H,2H,2H-perfluorodecylacrylate) or pPFDA, poly(tetravinyl-tetramethylcyclotetrasilohexane) or pV4D4, poly(divinylbenzene) or pDVB, poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasilohexane) or pV3D3, and cross-linked copolymers of poly(2-hydroxyethylmethacrylate) and poly(ethylene glycol) diacrylate or p(PHEMA-co-EGDA). Particles of salt (CaSO4 center dot 2H(2)O) are formed and shaped with a focused ion beam and adhered to a tipless cantilever beam using a micromanipulator setup to study their adhesion strength with a molecular force probe (MFP). Adhesion forces were measured on the substrates in wet and dry conditions to evaluate the effects of interfacial fluid layers and capillary bridges on net adhesion strength. The adhesion between salt particles and the pPFDA coatings decreased by 5.1 +/- 1.15 nN in wet states, indicating the influence of capillary bridging between the particle and the liquid layer. In addition, scale nucleation and growth on various surfaces is examined using a quartz crystal microbalance (QCM), where supersaturated solution of CaSO4 center dot 2H(2)O is passed over bare and polymer-coated quartz substrates while mass gain is measured in real time. The salt accretion decreased by 2 folds on pPFDA-coated substrates when compared to that on p(HEMA-co-EGDA) coatings. Both MFP and QCM studies are essential in studying the impact of surface energy and roughness on the extent of scale formation and adhesion strength. This study can pave way for the design of scale-resistant surfaces with potential applications in water treatment, energy harvesting, and purification industries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据