4.8 Article

Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 8, 页码 8567-8575

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b21836

关键词

silver flakes; iodization; silver nanoparticles; conductive composites; on-skin electronics; elect rophysiological monitoring; human-machine interface

资金

  1. National Key Research and Development Program of China [2017YFA0204600]
  2. National Natural Science Foundation of China [91648115, 51820105008]
  3. Flexible Electronics Research Center of HUST

向作者/读者索取更多资源

Electrically conductive composites (ECCs) hold great promise in stretchable electronics because of their printability, facile preparation, elasticity, and possibility for large-area fabrication. A high conductivity at steady state and during mechanical deformation is a critical property for ECCs, and extensive efforts have been made to improve the conductivity. However, most of those approaches are exclusively functional to a specific polymer matrix, restricting their capability to meet other requirements, such as mechanical, adhesive, and thermomechanical properties. Here, we report a generic approach to prepare ECCs with conductivity close to that of bulk metals and maintain their conductivity during stretching. This approach iodizes the surfactants on the commercial silver flakes, and subsequent photo exposure converts these silver iodide nanoparticles to silver nanoparticles. The ECCs based on silver nanoparticle-covered silver flakes exhibit high conductivity because of the removal of insulating surfactants as well as the enhanced contact between flakes. The treatment of silver flakes is independent of the polymer matrix and provides the flexibility in matrix selection. In development of stretchable interconnects, ECCs can be prepared with the same polymer as the substrate to ensure strong adhesion between interconnects and the substrate. For the fabrication of on-skin electrodes, a polymer matrix of low modulus can be selected to enhance conformal contact with the skin for reduced impedance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据