4.5 Article

Wettability and connectivity of overmature shales in the Fuling gas field, Sichuan Basin (China)

期刊

AAPG BULLETIN
卷 103, 期 3, 页码 653-689

出版社

AMER ASSOC PETROLEUM GEOLOGIST
DOI: 10.1306/09051817138

关键词

-

资金

  1. National Natural Science Foundation of China [41690134, 41672139]
  2. National Postdoctoral Program for Innovative Talents [BX20180279]
  3. Fundamental Research Funds for the Central Universities from China University of Geosciences (Wuhan) [CUGQYZX1707]
  4. China Geological Survey project grants [12120114046901, DD20160185]
  5. Program of Introducing Talents of Discipline to Universities [B14031]
  6. China National Science and Technology Major Projects [2017ZX05005-001-008, 2016ZX05034-002-003]

向作者/读者索取更多资源

The Fuling gas field in Sichuan Basin, China, has produced greater than 1.5 x 10(10) m(3) (0.53 tcf) of natural gas from overmature Upper Ordovician Wufeng and lower Silurian Longmaxi shales. To systemically investigate the characteristics of wettability and connectivity and to understand the underlying causes of production behavior, we study five samples of Wufeng and Longmaxi shales with different total organic carbon contents and mineral compositions. Complementary approaches include mercury intrusion capillary pressure (MICP), contact angle measurement, spontaneous imbibition and saturated diffusion, and tracer (both nonsorbing and sorbing) migration mapped via laser ablation inductively coupled plasma mass spectrometry. According to measured contact angles and imbibition tests conducted on aqueous (deionized water and brine) and oleic (n-decane) phases, Wufeng and Longmaxi shales are strongly oil wet and moderately strong water wet. The lower boundary of estimated permeability obtained from n-decane imbibition can reach 137 nd, which is higher than the geometric mean permeability derived from the MICP method (5.5-68.8 nd). Effective diffusion coefficients of the Wufeng and Longmaxi shales are in the range of 10(-13) m(2)/s (1.1 x 10(-12) ft(2)/s). Tests of imbibition and saturated diffusion using tracer-containing brine show that concentrations of nanometer-sized tracers decrease rapidly (a factor of >10) over a migration distance of a few millimeters from the sample edge, suggesting the presence of poorly edge-connected water-wet pores. Sparsely connected hydrophilic pores, mixed wettability, and highly restricted pathways collectively contribute to the limited migration of nano-sized tracers, which probably results in the production behavior of initial steep decline and low overall recovery in the Fuling gas field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据