4.7 Article

De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations

期刊

AMERICAN JOURNAL OF HUMAN GENETICS
卷 98, 期 2, 页码 373-381

出版社

CELL PRESS
DOI: 10.1016/j.ajhg.2015.12.015

关键词

-

资金

  1. Netherlands Organization for Health Research and Development, ZonMw [907-00-365]
  2. Netherlands Organization for Scientific Research (NWO) [Vici-865.12.005]
  3. Stockholm County Council
  4. Karolinska Institutet
  5. Frimurare Barnhuset i Stockholm
  6. Cancer Research Foundations of Radiumhemmet
  7. Swedish Childhood Cancer Foundation
  8. Karolinska Institutet research funds
  9. Australian National Health and Medical Research Council (NHMRC) [628952, 1041920]
  10. Strategic Positioning Fund on Genetic Orphan Diseases
  11. Industry Alignment Fund seeding grant from the Biomedical Research Council, A*STAR, Singapore

向作者/读者索取更多资源

Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-) function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据