4.7 Article

Improved topology prediction using the terminal hydrophobic helices rule

期刊

BIOINFORMATICS
卷 32, 期 8, 页码 1158-1162

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btv709

关键词

-

资金

  1. Swedish Research Council [VR-NT 2012-5046]
  2. Bioinformatics Infrastructure for Life Science (BILS)

向作者/读者索取更多资源

Motivation: The translocon recognizes sufficiently hydrophobic regions of a protein and inserts them into the membrane. Computational methods try to determine what hydrophobic regions are recognized by the translocon. Although these predictions are quite accurate, many methods still fail to distinguish marginally hydrophobic transmembrane (TM) helices and equally hydrophobic regions in soluble protein domains. In vivo, this problem is most likely avoided by targeting of the TM-proteins, so that non-TM proteins never see the translocon. Proteins are targeted to the translocon by an N-terminal signal peptide. The targeting is also aided by the fact that the N-terminal helix is more hydrophobic than other TM-helices. In addition, we also recently found that the C-terminal helix is more hydrophobic than central helices. This information has not been used in earlier topology predictors. Results: Here, we use the fact that the N- and C-terminal helices are more hydrophobic to develop a new version of the first-principle-based topology predictor, SCAMPI. The new predictor has two main advantages; first, it can be used to efficiently separate membrane and non-membrane proteins directly without the use of an extra prefilter, and second it shows improved performance for predicting the topology of membrane proteins that contain large non-membrane domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据