4.6 Article

Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria

期刊

AGING-US
卷 8, 期 10, 页码 2551-+

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/aging.101089

关键词

telomerase; brain; aging; rapamycin; dietary restriction

资金

  1. BBSRC [BB/K019260/1, BB/I020748/1]
  2. Biotechnology and Biological Sciences Research Council [BB/I020748/1, BB/F010966/1, BB/K019260/1] Funding Source: researchfish
  3. BBSRC [BB/K019260/1, BB/I020748/1, BB/F010966/1] Funding Source: UKRI

向作者/读者索取更多资源

Telomerase in its canonical function maintains telomeres in dividing cells. In addition, the telomerase protein TERT has non-telomeric functions such as shuttling to mitochondria resulting in a decreased oxidative stress, DNA damage and apoptosis. TERT protein persists in adult neurons and can co-localise to mitochondria under various stress conditions. We show here that TERT expression decreased in mouse brain during aging while release of reactive oxygen species (ROS) from the mitochondrial electron transport chain increased. Dietary restriction (DR) caused accumulation of TERT protein in mouse brain mitochondria correlating to decreased ROS release and improved learning and spatial short-term memory. Decreased mTOR signalling is a mediator of DR. Accordingly, feeding mice with rapamycin increased brain mitochondrial TERT and reduced ROS release. Importantly, the beneficial effects of rapamycin on mitochondrial function were absent in brains and fibroblasts from first generation TERT -/-mice, and when TERT shuttling was inhibited by the Src kinase inhibitor bosutinib. Taken together, our data suggests that the mTOR signalling pathway impinges on the mitochondrial localisation of TERT protein, which might in turn contribute to the protection of the brain by DR or rapamycin against age-associated mitochondrial ROS increase and cognitive decline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据