4.5 Article

Compositional Analysis of Biomass Reference Materials: Results from an Interlaboratory Study

期刊

BIOENERGY RESEARCH
卷 9, 期 1, 页码 303-314

出版社

SPRINGER
DOI: 10.1007/s12155-015-9675-1

关键词

Biomass reference material; Compositional analysis; Sugarcane bagasse (Saccharum spp. hybrid) NIST RM 8491; Eastern cottonwood (Populus deltoides) NIST RM 8492; Monterey pine (Pinus radiata) NIST RM 8493; Wheat straw (Triticum aestivum var. Thunderbird) NIST RM 8494

资金

  1. US Department of Energy Office of the Biomass Program

向作者/读者索取更多资源

Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491-8494) were prepared and characterized, via an interlaboratory comparison exercise in the early 1990s to evaluate biomass summative compositional methods, analysts, and laboratories. Having common, uniform, and stable biomass reference materials gives the opportunity to assess compositional data compared to other analysts, to other labs, and to a known compositional value. The expiration date for the original characterization of these RMs was reached and an effort to assess their stability and recharacterize the reference values for the remaining material using more current methods of analysis was initiated. We sent samples of the four biomass RMs to 11 academic, industrial, and government laboratories, familiar with sulfuric acid compositional methods, for recharacterization of the component reference values. In this work, we have used an expanded suite of analytical methods that are more appropriate for herbaceous feedstocks, to recharacterize the RMs' compositions. We report the median values and the expanded uncertainty values for the four RMs on a dry-mass, whole-biomass basis. The original characterization data has been recalculated using median statistics to facilitate comparisons with this data. We found improved total component closures for three out of the four RMs compared to the original characterization, and the total component closures were near 100 %, which suggests that most components were accurately measured and little double counting occurred. The major components were not statistically different in the recharacterization which suggests that the biomass materials are stable during storage and that additional components, not seen in the original characterization, were quantified here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据