4.7 Review

Synthetic Strategies for Engineering Intravenous Hemostats

期刊

BIOCONJUGATE CHEMISTRY
卷 26, 期 7, 页码 1224-1236

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.5b00070

关键词

-

资金

  1. NIH NIBIB [1R21EB018637]
  2. Bioengineering Cardiovascular Training Grant NIH [2T32EB001650-06A2]

向作者/读者索取更多资源

While there are currently many well-established topical hemostatic agents for field administration, there are still limited tools to staunch bleeding at less accessible injury sites. Current clinical methods to restore hemostasis after large volume blood loss include platelet and clotting factor transfusion, which have respective drawbacks of short shelf life and risk of viral transmission. Therefore, synthetic hemostatic agents that can be delivered intravenously and encourage stable clot formation after localizing to sites of vascular injury are particularly appealing. In the past three decades, platelet substitutes have been prepared using drug delivery vehicles such as liposomes and PLGA nanopartides that have been modified to mimic platelet properties. Additionally, structural considerations such as particle size, shape, and flexibility have been addressed in a number of reports. Since platelets are the first responders after vascular injury, platelet substitutes represent an important class of intravenous hemostats under development. More recently, materials affecting fibrin formation have been introduced to induce faster or more stable blood clot formation through fibrin cross-linking. Fibrin represents a major structural component in the final blood clot, and a fibrin-based hemostatic mechanism acting downstream of initial platelet plug formation may be a safer alternative to platelets to avoid undesired thrombotic activity. This Review explores intravenous hemostats under development and strategies to optimize their clotting activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据