4.8 Article

Advanced Functional Nanomaterials for Theranostics

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201603524

关键词

-

资金

  1. National Institutes of Health [R21EB019147, R01EB017270, DP5OD017898]
  2. National Science Foundation [1555220]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1555220] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i. e., theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers, and targeted delivery of therapeutic drugs. Here, some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives, are discussed. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles, and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The need for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials, will be key driving factors for theranostic agent research in the near future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据