4.8 Article

Suction Caps: Designing Anisotropic Core/Shell Microcapsules with Controlled Membrane Mechanics and Substrate Affinity

向作者/读者索取更多资源

Core/shell microcapsules with low-permeability membranes and controlled morphology are crucial for the delivery and controlled release of fragrance molecules, pharmaceuticals, inks, or vitamins. Design criteria for next generation microcapsules must include chemical and mechanical stability, and also provide enhanced substrate interactions to improve deposition onto relevant complex surfaces. Here, a coupled approach is presented to synthesize core/shell delivery systems by interfacial polymerization to enhance both the microcapsule-substrate interactions and the mechanical properties of the capsules to induce a burst-type release. By combining membrane synthesis, nonlinear mechanics, interfacial rheology, analysis of mass transfer, and capsule morphology generated during interfacial polymerization, large permanent deformations into the capsule geometry are programmed, resulting in chemically stable, yet mechanically rupturing microcapsules with anisotropic geometry. To promote interactions and capsule adhesion onto complex substrates, the capsule contact area is controlled to form prominent suction cup shaped rims. These capsules have favorable, far-reaching electrostatic interactions with oppositely charged substrates such as glass, hair, skin, or fabric. By modulating membrane mechanical properties and morphology during synthesis, formulation-independent physical criteria are used to improve the overall performance of a functional delivery system while expanding knowledge of the key parameters influencing the interfacial polymerization process and membrane formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据