4.8 Article

A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201604872

关键词

-

资金

  1. National Institutes of Health's National Center for Advancing Translational Sciences [UL1TR000150]
  2. Chicago Biomedical Consortium [PDR-067]
  3. Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]
  4. MRSEC program at the Materials Research Center [NSF DMR-1121262]
  5. International Institute for Nanotechnology (IIN)
  6. Keck Foundation
  7. State of Illinois, through the IIN
  8. NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES [UL1TR000150, UL1TR001422] Funding Source: NIH RePORTER
  9. NATIONAL CENTER FOR RESEARCH RESOURCES [S10RR022494] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Chronic nonhealing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications, possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein the authors set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co-N-isopropylacrylamide) (PPCN) are synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel is determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes are measured. Wound closure rates and wound blood perfusion are assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NPs disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) are protected from degradation and copper ions are slowly released. Cytotoxicity and apoptosis due to copper ion release are significantly reduced while dermal cell migration in vitro and wound closure rates in vivo are significantly enhanced. In vivo, H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据