4.4 Article

Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/DMSO.S192228

关键词

resveratrol; high fat diet; obesity; oxidative stress; gut microbiota

资金

  1. Wuxi Municipal Science and Education Strengthening Health Engineering Medical Key Discipline Construction Program [ZDXK003]
  2. Wuxi Municipal Science and Education Strengthening Health Engineering Medical Young Talent - Project [QNRC039]
  3. Wuxi Municipal Commission of Health and Family Planning Medical Research Project [Q201613]

向作者/读者索取更多资源

Purpose: The antioxidant resveratrol (RSV) has low bioavailability and can reach the colon to access the gut microbial ecosystem. RSV administration together with high-fat diet prevented abnormal changes of intestinal microbiota. However, whether or not RSV can reshape the intestinal microbiota of obese mice and alleviate obesity-related diseases remains to be studied. This study aimed to explore the role of RSV in alleviating high-fat-induced obesity and its relationship with oxidative stress and gut microbiota. Methods: Male C57BL/6 mice were divided into five groups and administered for 16 weeks with: standard diet (CON), high-fat diet (60% energy for lard, HFD), and HFD with low, medium, and high dose of RSV, 50, 75, and 100 mg/kg body weight administered daily via drinking water, respectively. Results: Medium and high RSV treatment significantly prevented body weight gain, decreased relative weight of liver and adipose tissue compared with HFD (P<0.05). All doses significantly prevented HFD-induced increase of serum triglyceride, low density lipoprotein cholesterol, glucose, and endotoxemia (P<0.05). Medium and high dose also prevented chronic inflammation by decreasing serum interleukin-1 and tumor necrosis factor-alpha (P<0.05), and oxidative stress in liver and brain indicated by increase in superoxide dismutase, catalase, glutathione peroxidase activity (P<0.05). Formation of malondialdehyde was prevented by all doses compared with HFD (P<0.05). Both medium and high doses of RES increased alpha diversity of gut microbiota according to the Chao1 and Shannon indices (P<0.05). Medium dose induced obvious shift in gut microbiota composition according to principal component analysis. High dose of RSV effectively prevented HFD-induced increase of Coriobacteriaceae and Desulfovibrionaceae (P<0.05), which show a significant correlation with body weight (r>0.8 P<0.00). Conclusion: RSV prevented HFD-induced endotoxemia, oxidative stress, and gut microbiota change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据