4.8 Article

Photovoltaic and Amplified Spontaneous Emission Studies of High-Quality Formamidinium Lead Bromide Perovskite Films

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 26, 期 17, 页码 2846-2854

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201504977

关键词

-

资金

  1. Swiss confederation under Swiss Government Scholarship Programme
  2. European Community [281063]
  3. MESO [604032]
  4. National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia [ENE1474-02]

向作者/读者索取更多资源

This study demonstrates the formation of extremely smooth and uniform formamidinium lead bromide (CH(NH2)(2)PbBr3 = FAPbBr(3)) films using an optimum mixture of dimethyl sulfoxide and N,N-dimethylformamide solvents. Surface morphology and phase purity of the FAPbBr(3) films are thoroughly examined by field emission scanning electron microscopy and powder X-ray diffraction, respectively. To unravel the photophysical properties of these films, systematic investigation based on time-integrated and time-dependent photoluminescence studies are carried out which, respectively, bring out relatively lower nonradiative recombination rates and long lasting photogenerated charge carriers in FAPbBr(3) perovskite films. The devices based on FTO/TiO2/FAPbBr(3)/spiro-OMeTAD/Au show highly reproducible open-circuit voltage (V-oc) of 1.42 V, a record for FAPbBr(3)-based perovskite solar cells. V-oc as a function of illumination intensity indicates that the contacts are very selective and higher V-oc values are expected to be achieved when the quality of the FAPbBr(3) film is further improved. Overall, the devices based on these films reveal appreciable power conversion efficiency of 7% under standard illumination conditions with negligible hysteresis. Finally, the amplified spontaneous emission (ASE) behavior explored in a cavity-free configuration for FAPbBr(3) perovskite films shows a sharp ASE threshold at a fluence of 190 mu J cm(-2) with high quantum efficiency further confirming the high quality of the films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据