4.8 Article

Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis

期刊

SCIENCE ADVANCES
卷 4, 期 11, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau1354

关键词

-

资金

  1. JST/PRESTO [JPMJPR16F3]
  2. JSPS KAKENHI [16H04799, 16H06485]
  3. Research Center Network for Realization of Regenerative Medicine of AMED
  4. Strategic Programs for R&D (President's Discretionary Fund) of RIKEN

向作者/读者索取更多资源

Organogenesis is a self-organizing process of multiple cells in three-dimensional (3D) space, where macroscopic tissue deformations are robustly regulated by multicellular autonomy. It is clear that this robust regulation requires cells to sense and modulate 3D tissue formation across different scales, but its underlying mechanisms are still unclear. To address this question, we developed a versatile computational model of 3D multicellular dynamics at single-cell resolution and combined it with the 3D culture system of pluripotent stem cell-derived optic-cup organoid. The complementary approach enabled quantitative prediction of morphogenesis and its corresponding verification and elucidated that the macroscopic 3D tissue deformation is fed back to individual cellular force generations via mechanosensing. We hereby conclude that mechanical force plays a key role as a feedback regulator to establish the robustness of organogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据