4.8 Article

Boosting contact sliding and wear protection via atomic intermixing and tailoring of nanoscale interfaces

期刊

SCIENCE ADVANCES
卷 5, 期 1, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau7886

关键词

-

资金

  1. National Research Foundation, Prime Minister's Office, Singapore [NRF-CRP 4-2008-06]
  2. A*STAR Nanoimprint Foundry [1525300037]
  3. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

Friction and wear cause energy wastage and system failure. Usually, thicker overcoats serve to combat such tribological concerns, but in many contact sliding systems, their large thickness hinders active components of the systems, degrades functionality, and constitutes a major barrier for technological developments. While sub-10-nm overcoats are of key interest, traditional overcoats suffer from rapid wear and degradation at this thickness regime. Using an enhanced atomic intermixing approach, we develop a similar to 7- to 8-nm-thick carbon/silicon nitride (C/SiNx) multilayer overcoat demonstrating extremely high wear resistance and low friction at all tribological length scales, yielding similar to 2 to 10 times better macroscale wear durability than previously reported thicker (similar to 20 to 100 nm) overcoats on tape drive heads. We report the discovery of many fundamental parameters that govern contact sliding and reveal how tuning atomic intermixing at interfaces and varying carbon and SiNx thicknesses strongly affect friction and wear, which are crucial for advancing numerous technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据