4.8 Article

Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance

期刊

SCIENCE ADVANCES
卷 4, 期 12, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aat5077

关键词

-

资金

  1. Hong Kong Research Grant Council [N_HKBU215/13, T12-710/16-R]
  2. National Science Foundation of China [31361163003]

向作者/读者索取更多资源

Studies of drug resistance mostly characterize genetic mutation, and we know much less about phenotypic mechanisms of drug resistance, especially at a quantitative level. p53 is an important mediator of cellular response to chemotherapy, but even p53 wild-type cells vary in drug sensitivity for unclear reasons. Here, we elucidated a new resistance mechanism to a DNA-damaging chemotherapeutic through bimodal modulation of p53 activation dynamics. By combining single-cell imaging with computational modeling, we characterized a four-component regulatory module, which generates bimodal p53 dynamics through coupled feed-forward and feedback, and found that the inhibitory strength between ATM and Mdm2 determined the differential modular output between drug-sensitive and drug-resistant cancer cell lines. We further showed that the combinatorial inhibition of Mdm2 and Wip1 was an effective strategy to alter p53 dynamics in resistant cancer cells and sensitize their apoptotic response. Our results point to p53 pulsing as a potentially druggable mechanism that mediates chemoresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据