4.8 Article Proceedings Paper

Performance Limits of the Self-Aligned Nanowire Top-Gated MoS2 Transistors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201602250

关键词

-

资金

  1. 973 grant of MOST [2013CBA01604]
  2. MOE [20120141110054]
  3. NSFC grant [61222402, 61474084, 61574101]
  4. National Laboratory of Infrared Physics in Shanghai Institute of Technical Physics [Z201402]
  5. Ten Thousand Talents Program for Young Talents

向作者/读者索取更多资源

In order to realize the promising potential of MoS2 as the alternative channel material, it is essential to achieve high-performance top-gated MoS2 field-effect transistors (FETs), especially since the back-gated counterparts cannot control the device individually. Although uniform high-k dielectric films, such as HfO2, can be obtained through the introduction of artificial nucleation sites on the MoS2 channel to fabricate top-gated FETs, this would inevitably degrade their channel/dielectric interface quality, induce significant charged impurity scattering and lower carrier mobility. In this work, MoS2 FETs are fabricated using a self-aligned nanowire top-gate, which can effectively reduce the charged impurity scattering on the surface of MoS2. Specifically, the fabricated short-channel devices exhibit impressive electrical performances, such as the high on/off current ratio, low interface trap density, and near-ideal subthreshold slope at room temperature. In addition, the short channel effect is systematically analyzed, which indicates that the phonon scattering can be the dominant scattering mechanism in the devices when the amount of charged impurities is effectively reduced with the self-aligned nanowire gate. All these provide an enhanced fabrication scheme to attain top-gated short-channel devices with the optimized interface and potentially to explore their corresponding performance limits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据