4.6 Article

Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals

期刊

ACS ENERGY LETTERS
卷 4, 期 1, 页码 85-93

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.8b02052

关键词

-

资金

  1. European Union seventh Framework Programme [614897]

向作者/读者索取更多资源

Halide perovskite nanocrystals hold promise for printable optoelectronic and photonic applications. Doping enhances their functionalities and is being investigated for substituting lead with environmentally friendlier elements. The most investigated dopant is Mn2+ that acts as a color center sensitized by the host excitons. The sensitization mechanism is far from understood and no comprehensive picture of the energy-transfer process has been proposed. Similarly, the role of shallow states, particularly abundant in defect tolerant materials, is still unknown. Here, we address this problem via spectroscopic studies at controlled excitation density and temperature on Mn:CsPbCl3 nanocrystals. Our results indicate a two-step process involving exciton localization in a shallow metastable state that mediates the thermally assisted sensitization of the Mn2+ emission, which is completely quenched for T < 200 K. At T <= 60 K, however, such emission surprisingly reappears, suggesting direct energy transfer from band-edge states. Electron spin resonance supports this picture, revealing the signatures of conformational rearrangements below 70 K, possibly removing the potential barrier for sensitization. Our results demystify anomalous behaviors of the exciton-to-Mn2+ energy-transfer mechanism and highlight the role of shallow defects in the photophysics of doped perovskite nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据