4.6 Article

Enhancing Catalytic Activity of MoS2 Basal Plane S-Vacancy by Co Cluster Addition

期刊

ACS ENERGY LETTERS
卷 3, 期 11, 页码 2685-2693

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.8b01567

关键词

-

资金

  1. Stanford Natural Gas Initiative (NGI)
  2. Stanford Precourt Institute of Energy (PIE)
  3. Samsung Global Research Outreach (GRO) Program
  4. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The basal plane of molybdenum disulfide (MoS2) was recently activated for hydrogen evolution reaction (HER) by creating sulfur (S) vacancies (MoS2-x). However, the HER activity of those S-vacancies depends on the concentration of S-vacancies, imposing a dilemma for either improving activity per site or increasing overall active site density. Herein, we use density functional theory (DFT) calculations and experiments to show that the HER activities of MoS2-x are greatly enhanced by adding cobalt (Co) clusters on the basal plane. Our DFT results show that the highest HER activity is achieved when the Co clusters are anchored on the S-vacancies with the interface of Co Mo as the preferred active site. Our experiments confirm that the addition of Co enhances the activity per unit active site and increases the electrochemical active surface area. These results demonstrate the basal plane activity of MoS2-x can be enhanced by decorating S vacancies with transition-metal clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据