4.8 Article Proceedings Paper

Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201603850

关键词

-

资金

  1. Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy
  2. US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division
  3. Office of Science Early Career Research Program
  4. Office of Science of the US Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

Defects formed during chemical vapor deposition (CVD) of two-dimensional (2D) transition metal dichalcogenides (TMDs) currently limit their quality and optoelectronic properties. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed to enable next generation optoelectronic devices. In this work, isoelectronic doping is presented as a new strategy to form stable alloys and suppress defects and enhance photoluminescence (PL) in CVD-grown TMD monolayers. The isoelectronic substitution of W atoms for Mo atoms in CVD-grown monolayers of Mo1-xWxSe2 (0 < x < 0.18) is shown to effectively suppress Se vacancy concentration by 50% compared to those found in pristine MoSe2 monolayers, resulting in a decrease in defect-mediated nonradiative recombination, approximate to 10 times more intense PL, and an increase in the carrier lifetime by a factor of 3. Theoretical predictions reveal that isoelectronic W alloying to form Mo1-xWxSe2 monolayers raises the energy of deep level defects in MoSe2 to enable faster quenching, which is confirmed by low temperature (4-125 K) PL from defect-related localized states. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据