4.6 Article

Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors

期刊

ROYAL SOCIETY OPEN SCIENCE
卷 5, 期 11, 页码 -

出版社

ROYAL SOC
DOI: 10.1098/rsos.180842

关键词

Al doping; NiO nanosheet arrays; electrochemical property; asymmetric supercapacitor

资金

  1. National Key R&D Program of China [2017YFA0700104]
  2. National Natural Science Foundation of China [21601136]
  3. National Program for Thousand Young Talents of China
  4. Tianjin Municipal Education Commission
  5. Tianjin Municipal Science and Technology Commission [15JCYBJC52600]
  6. Fundamental Research Funds of Tianjin University of Technology

向作者/读者索取更多资源

Electrode material design is the key to the development of asymmetric supercapacitors with high electrochemical performances and stability. In this work, Al-doped NiO nanosheet arrays were synthesized using a facile hydrothermal method followed by a calcination process, and the synthesized arrays exhibited a superior pseudocapacitive performance, including a favourable specific capacitance of 2253 +/- 105 F g(-1) at a current density of 1 A g(-1), larger than that of an undoped NiO electrode (1538 +/- 80 F g(-1)). More importantly, the arrays showed a high-rate capability (75% capacitance retention at 20 A g(-1)) and a high cycling stability (approx. 99% maintained after 5000 cycles). The above efficient capacitive performance benefits from the large electrochemically active area and enhanced conductivity of the arrays. Furthermore, an assembled asymmetric supercapacitor based on the Al-doped NiO arrays and N-doped multiwalled carbon nanotube ones delivered a high specific capacitance of 192 +/- 23 F g(-1) at 0.4 A g(-1) with a high-energy density of 215 +/- 15 Wh kg(-1) and power density of 21.6 kW kg(-1). Additionally, the asymmetric device exhibited a durable cyclic stability (approx. 100% retention after 5000 cycles). This work with the proposed doping method will be beneficial to the construction of high-performance supercapacitor systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据