4.4 Article

Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 4: calibration accuracy over field of view, retardance spatial uniformity, and achromat design sensitivity

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JATIS.4.4.044006

关键词

instrumentation; polarization; Mueller matrix; Daniel K. Inouye Solar Telescope

资金

  1. DKIST project

向作者/读者索取更多资源

Modern observatories and instruments require optics fabricated at larger sizes with more stringent performance requirements. The Daniel K. Inouye Solar Telescope (DKIST) will be the world's largest solar telescope at 4.0-m aperture delivering a 300 W beam and a 5 arc min field. Spatial variation of retardance is a limitation to calibration of the full field. Three polarimeters operate seven cameras simultaneously in narrow bandpasses from 380 to 1800 nm. The DKIST polarization calibration optics must be 120 mm in diameter at Gregorian focus to pass the beam and operate under high heat load, UV flux, and environmental variability. Similar constraints apply to the three retarders for modulation within the instrument suite with large beams near focal planes at F/18 to F/62. We assess how design factors can produce more spatial and spectral errors simulating elliptical retardance caused by polishing errors. We measure over 5-deg net circular retardance and spectral oscillations over +/-2 deg for optics specified as strictly linear retarders. Spatial variations on scales > 10 mm contain 90% of the variation. Different designs can be a factor of 2 more sensitive to polishing errors with dissimilar spatial distributions even when using identical retardance bias values and materials. The calibration of the on axis beam is not impacted once circular retardance is included. The calibration of the full field is limited by spatial retardance variation unless techniques account for this variation. We show calibration retarder variation at amplitudes of 1-deg retardance for field angles greater than roughly 1 arc min for both quartz and MgF2 retarders at visible wavelengths with significant variation between the three DKIST calibration retarders. We present polishing error maps to inform calibration techniques attempting to deliver absolute accuracy of system calibration below effective cross talk levels of 1 deg retardance. (c) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据