4.6 Review

Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives

期刊

FRONTIERS IN CHEMISTRY
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2018.00616

关键词

cathode; solid electrolyte; solid state lithium battery; cathode-solid electrolyte interface; advanced characterization

资金

  1. National Key R&D Program of China [2017YFB0102004]
  2. National Natural Science Foundation of China [51822211]
  3. China Postdoctoral Science Foundation, Beijing Municipal Science & Technology Commission [Z171100000917021]
  4. One Hundred Talent Project of the Chinese Academy of Sciences and Thousand Talents Program for Young Scientists

向作者/读者索取更多资源

Solid state lithium batteries are widely accepted as promising candidates for next generation of various energy storage devices with the probability to realize improved energy density and superior safety performances. However, the interface between electrode and solid electrolyte remain a key issue that hinders practical development of solid state lithium batteries. In this review, we specifically focus on the interface between solid electrolytes and prevailing cathodes. The basic principles of interface layer formation are summarized and three kinds of interface layers can be categorized. For typical solid state lithium batteries, a most common and daunting challenge is to achieve and sustain intimate solid-solid contact. Meanwhile, different specific issues occur on various types of solid electrolytes, depending on the intrinsic properties of adjacent solid components. Our discussion mostly involves following electrolytes, including solid polymer electrolyte, inorganic solid oxide and sulfide electrolytes as well as composite electrolytes. The effective strategies to overcome the interface instabilities are also summarized. In order to clarify interfacial behaviors fundamentally, advanced characterization techniques with time, and atomic-scale resolution are required to gain more insights from different perspectives. And recent progresses achieved from advanced characterization are also reviewed here. We highlight that the cooperative characterization of diverse advanced characterization techniques is necessary to gain the final clarification of interface behavior, and stress that the combination of diverse interfacial modification strategies is required to build up decent cathode-electrolyte interface for superior solid state lithium batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据