4.7 Article

Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites

期刊

MATERIALS & DESIGN
卷 161, 期 -, 页码 64-71

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2018.11.027

关键词

Mycelium; Biomaterial; Mushroom; Thermoplastic; Foam; Trametes multicolor; Pleurotus ostreatus

资金

  1. Netherlands Organization for Scientific Research (NWO) [14572]

向作者/读者索取更多资源

Mycelium-based composites result from the growth of filamentous fungi on organic materials such as agricultural waste streams. These novel biomaterials represent a promising alternative for product design and manufacturing both in terms of sustainable manufacturing processes and circular lifespan. This study shows that their morphology, density, tensile and flexural strength, as well as their moisture-and water-uptake properties can be tuned by varying type of substrate (straw, sawdust, cotton), fungal species (Pleurotus ostreatus vs. Trametes multicolor) and processing technique (no pressing or cold or heat pressing). The fungal species impacts colonization level and the thickness of the air-exposed mycelium called fungal skin. Colonization level and skin thickness as well as the type of substrate determine the stiffness and water resistance of the materials. Moreover, it is shown that heat pressing improves homogeneity, strength and stiffness of the materials shifting their performance from foam-like to cork-and wood-like. Together, these results demonstrate that by changing the fabrication process, differences in performance of mycelium materials can be achieved. This highlights the possibility to produce a range of mycelium-based composites. In fact, it is the first time mycelium composites have been described with natural material properties. (C) 2018 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据