4.2 Article

Shooting method analysis in wire coating withdrawing from a bath of Oldroyd 8-constant fluid with temperature dependent viscosity

期刊

OPEN PHYSICS
卷 16, 期 1, 页码 956-966

出版社

DE GRUYTER POLAND SP ZOO
DOI: 10.1515/phys-2018-0117

关键词

Ruge-Kuta 4th-order method; heat transfer; temperature dependent viscosity; wire coating; viscoelastic Oldroyd 8-constant fluid

向作者/读者索取更多资源

The most important plastic resins used in wire coating are high/low density polyethylene (LDPE/HDPE), plasticized polyvinyl chloride (PVC), nylon and polysulfone. To provide insulation and mechanical strength, coating is necessary for wires. Simulation of polymer flow during wire coating dragged from a bath of Oldroyd 8-constant fluid incompresible and laminar fluid inside pressure type die is carried out numerically. In wire coating the flow depends on the velocity of the wire, geometry of the die and viscosity of the fluid.The non-dimensional resulting flow and heat transfer differential equations are solved numerically by Ruge-Kutta 4th-order method with shooting technique. Reynolds model and Vogel's models are encountered for temperature dependent viscosity. The numerical solutions are obtained for velocity field and temperature distribution. The solutions are computed for different physical parameters.It is observed that the non-Newtonian propertis of fluid were favourable, enhancing the velocity in combination with temperature dependent variable. The Brinkman number contributes to increase the temperature for both Reynolds and Vogel'smodels. With the increasing of pressure gradient parameter of both Reynolds and Vogel's models, the velocity and temperature profile increases significantly in the presence of non-Newtonian parameter. Furthermore, the present result is also compared with published results as a particular case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据