4.6 Article

Intranasal curcumin protects against LPS-induced airway remodeling by modulating toll-like receptor-4 (TLR-4) and matrixmetalloproteinase-9 (MMP-9) expression via affecting MAP kinases in mouse model

期刊

INFLAMMOPHARMACOLOGY
卷 27, 期 4, 页码 731-748

出版社

SPRINGER BASEL AG
DOI: 10.1007/s10787-018-0544-3

关键词

Asthma exacerbations; Sensitization; Lipopolysaccharide; Airway remodeling; Collagen

资金

  1. Department of Science and Technology-Science and Engineering Research Board, New Delhi, India (DST-SERB)

向作者/读者索取更多资源

ObjectiveBacterial infections can exacerbate asthmatic inflammation depending on lipopolysaccharide (LPS) composition, the outermost component of cell wall, its exposure timings as well as host's immune status. In present study, Balb/c mice were exposed to antigen (ovalbumin) and LPS simultaneously to establish an asthmatic model. Curcumin (diferuloylmethane), well known for its anti-inflammatory potential, was administered through intranasal route 1h before LPS and OVA (ovalbumin) exposure to evaluate its efficacy against airway structural changes. MethodsInflammatory cell infiltration in lungs was measured by flow cytometry and further eosinophils were especially measured by immunofluorescence detection of major basic protein (MBP) as marker of eosinophilc granule protein. We also measured reactive oxygen species (ROS) in BALF by spectrofluorometry. MMP-9 activity was evaluated by gelatin zymography and mRNA expressions of MMP-9, TIMP-1, TGF-beta 1, IL-13, Collagen-1 and TLR-4 were measured in lungs. Protein expression of MAP kinases (P-ERK, P-JNK, P-p38), TLR-4, Cox-2, Lox-5 and Eotaxin was measured by western blotting. Hydroxyproline level and masson's trichrome staining were used to evaluate collagen deposition in lung.ResultsExposure to LPS (0.1 mu g) exacerbates airway inflammation and induces structural changes in lungs by enhanced ROS production, collagen deposition, expression of genes involved in airway remodeling and activation of MAP kinases pathway enzymes. Intranasal curcumin pretreatment had significantly suppressed inflammatory mediators and airway remodeling proteins.ConclusionOur results strongly suggest that intranasal curcumin effectively protects LPS-induced airway inflammation and structural changes by modulating genes involved in airway remodeling in safer way; hence, it can be considered as supplementary alternative towards asthma treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据