4.6 Article

Classification of Heart Sound Signal Using Multiple Features

期刊

APPLIED SCIENCES-BASEL
卷 8, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/app8122344

关键词

heart sound signal classification; discrete wavelets transform; mel frequency cepstral coefficient

资金

  1. Ministry of SMEs and Startups [S2442956]
  2. Sejong University
  3. Korea Technology & Information Promotion Agency for SMEs (TIPA) [S2442956] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Cardiac disorders are critical and must be diagnosed in the early stage using routine auscultation examination with high precision. Cardiac auscultation is a technique to analyze and listen to heart sound using electronic stethoscope, an electronic stethoscope is a device which provides the digital recording of the heart sound called phonocardiogram (PCG). This PCG signal carries useful information about the functionality and status of the heart and hence several signal processing and machine learning technique can be applied to study and diagnose heart disorders. Based on PCG signal, the heart sound signal can be classified to two main categories i.e., normal and abnormal categories. We have created database of 5 categories of heart sound signal (PCG signals) from various sources which contains one normal and 4 are abnormal categories. This study proposes an improved, automatic classification algorithm for cardiac disorder by heart sound signal. We extract features from phonocardiogram signal and then process those features using machine learning techniques for classification. In features extraction, we have used Mel Frequency Cepstral Coefficient (MFCCs) and Discrete Wavelets Transform (DWT) features from the heart sound signal, and for learning and classification we have used support vector machine (SVM), deep neural network (DNN) and centroid displacement based k nearest neighbor. To improve the results and classification accuracy, we have combined MFCCs and DWT features for training and classification using SVM and DWT. From our experiments it has been clear that results can be greatly improved when Mel Frequency Cepstral Coefficient and Discrete Wavelets Transform features are fused together and used for classification via support vector machine, deep neural network and k-neareast neighbor(KNN). The methodology discussed in this paper can be used to diagnose heart disorders in patients up to 97% accuracy. The code and dataset can be accessed at https:/ /github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features-/blob/master/README.md.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据