4.7 Article

Research Update: Liquid gated membrane filtration performance with inorganic particle suspensions

期刊

APL MATERIALS
卷 6, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5047480

关键词

-

资金

  1. Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0000326]
  2. National Science Foundation under NSF [1541959]

向作者/读者索取更多资源

Membrane filtration technology is widely used across several industries. But its efficiency is plagued by fouling, which ultimately deteriorates the membrane's performance. This paper provides a research update on the biologically inspired liquid-enabled gating mechanism that acts as a novel filtration and separation approach offering reduction in transmembrane pressure (TMP), improved throughput, and reduced fouling. We study the performance of such Liquid Gated Membranes (LGMs) and present their benefits for filtration in the presence of model inorganic (nanoclay particles) fouling. We show over twofold higher throughput, nearly threefold longer time to foul, more than 60% reduction in irreversible fouling, ability to return to baseline pressures after backwashing along with reduction in use of backwash water, and 10%-15% reduction in TMP for filtration of nanoclay particles. Fouling models exhibit not only delayed onset of fouling for LGMs compared to the control but also different fouling characteristics. These results demonstrate the potential of the liquid gating mechanism, which can lead to breakthroughs in membrane technology applications in particle filtration, microfiltration, and ultrafiltration. (C) 2018 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据