4.8 Article

Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction

期刊

ADVANCED SCIENCE
卷 6, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201801103

关键词

3D graphene; nonprecious metals; oxygen reduction reaction; single Fe atoms

资金

  1. National Natural Science Foundation of China [21503111, 21576139]
  2. Natural Science Foundation of Jiangsu Province [BK20171473]
  3. Natural Science Foundation of Jiangsu Higher Education Institutions of China [16KJB150020]
  4. National and Local Joint Engineering Research Center of Biomedical Functional Materials
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

The rational design of economical and high-performance nanocatalysts to substitute Pt for the oxygen reduction reaction (ORR) is extremely desirable for the advancement of sustainable energy-conversion devices. Isolated single atom (ISA) catalysts have sparked tremendous interests in electrocatalysis due to their maximized atom utilization efficiency. Nevertheless, the fabrication of ISA catalysts remains a grand challenge. Here, a template-assisted approach is demonstrated to synthesize isolated Fe single atomic sites anchoring on graphene hollow nanospheres (denoted as Fe ISAs/GHSs) by using Fe phthalocyanine (FePc) as Fe precursor. The rigid planar macrocycle structure of FePc molecules and the steric-hindrance effect of graphene nanospheres are responsible for the dispersion of Fe-N-x species at an atomic level. The combination of atomically dispersed Fe active sites and highly steady hollow substrate affords the Fe ISAs/GHSs outstanding ORR performance with enhanced activity, long-term stability, and better tolerance to methanol, SO2, and NOx in alkaline medium, outperforming the state-of-the-art commercial Pt/C catalyst. This work highlights the great promises of cost-effective Fe-based ISA catalysts in electrocatalysis and provides a versatile strategy for the synthesis of other single metal atom catalysts with superior performance for diverse applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据