4.8 Article

Kirigami-Inspired Deformable 3D Structures Conformable to Curved Biological Surface

期刊

ADVANCED SCIENCE
卷 5, 期 12, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201801070

关键词

3D deformable structures; conformable structures; hybrid films; kirigami

资金

  1. National Natural Science Foundation of China [61571016, 61621061]
  2. National Key Research AMP
  3. Development Program [2016YFA0201901]
  4. Thousand Talents Program for pioneer researchers

向作者/读者索取更多资源

By introducing stretchability and/or deformability to planar electronics, devices can conformably attach to 3D curved surfaces with minimal invasiveness, which is of great interest for next-generation wearables in clinical and biological applications. Here, a feasible route is demonstrated to generate deformable 3D structures as a robust platform to construct electronic systems by utilizing silver nanowires/parylene hybrid films in a way analogous to the art of kirigami. The hybrid films exhibit outstanding electrical conductivity along with decent optical transparency, flexibility, and long-term stability. These merits enable these films to work as electrodes for electrocardiogram recording with comparable accuracy to a commercial counterpart, and to fabricate a 7-GHz monopole antenna with good omni-directionality and a peak gain of 1.35 dBi. More importantly, a general scheme for constructing 3D deformable electronic systems is presented, including unique patterning procedures and rational cut designs inspired by kirigami. As an example, deformable transparent humidity sensors are fabricated to work on elbows and finger joints for sweating monitoring. The strategy demonstrated here for 3D deformable system construction is versatile and holds great promise for future advanced health monitoring at diverse and complex epidermal surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据