4.6 Article

Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing

期刊

ADVANCED ELECTRONIC MATERIALS
卷 5, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.201800795

关键词

electronic synapses; energy-efficient memory; ferroelectric tunnel junctions; neuromorphic computing; organic ferroelectric copolymers

资金

  1. Academy of Finland [13293916]
  2. Aalto University

向作者/读者索取更多资源

Energy efficiency, parallel information processing, and unsupervised learning make the human brain a model computing system for unstructured data handling. Different types of oxide memristors can emulate synaptic functions in artificial neuromorphic circuits. However, their cycle-to-cycle variability or strict epitaxy requirements remain a challenge for applications in large-scale neural networks. Here, solution-processable ferroelectric tunnel junctions (FTJs) with P(VDF-TrFE) copolymer barriers are reported showing analog memristive behavior with a broad range of accessible conductance states and low energy dissipation of 100 fJ for the onset of depression and 1 pJ for the onset of potentiation by resetting small tunneling currents on nanosecond timescales. Key synaptic functions like programmable synaptic weight, long- and short-term potentiation and depression, paired-pulse facilitation and depression, and Hebbian and anti-Hebbian learning through spike shape and timing-dependent plasticity are demonstrated. In combination with good switching endurance and reproducibility, these results offer a promising outlook on the use of organic FTJ memristors as building blocks in artificial neural networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据