4.5 Article

Epitaxy of (GaN)(1-x)(ZnO)(x) Solid-Solution Thin Films with Widely Tunable Chemical Composition and Strong Visible Absorption

期刊

PHYSICAL REVIEW APPLIED
卷 10, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.10.044001

关键词

-

资金

  1. CREST, Japan Science and Technology Agency (JST) [JPMJCR12C4]
  2. Japan Society for the Promotion of Science (JSPS) [JP16H06438, JP16H06441]
  3. Deutsche Forschungsgemeinschaft [YA 511/1-1]

向作者/读者索取更多资源

The alloying of wide-band-gap ZnO and GaN causes band-gap reduction, enabling visible-light-driven photocatalysis for high-efficiency water splitting. However, challenges in single-crystal (GaN)(1-x)(ZnO)(x) solid-solution synthesis prevent a better understanding of the optical properties and electronic structures. Here, low-temperature epitaxial growth of (GaN)(1-x)(ZnO)(x) thin films with a wide tunability of chemical composition is demonstrated by using a multitarget pulsed-laser-deposition (PLD) system. The phase pure (GaN)(1-x)(ZnO)(x) solid solution is obtained by alternately depositing GaN and ZnO with the thickness of each GaN/ZnO pair set within one or two unit cells. The band gap of the solid-solution thin films as a function of systematically controlled chemical composition shows asymmetric bowing with a minimum at approximately 2.0 eV for x = 0.65. Furthermore, a large absorption coefficient (>10(4) cm(-1)) in the visible-light region is observed. The shape of the absorption edge is not consistent with that of a direct-transition semiconductor. First-principles calculation suggests that this inconsistency originates from localization of the valence-band maximum on N atoms bonded with Zn. A technique for fabricating high-quality epitaxial (GaN)(1-x)(ZnO)(x) solid solutions is essential for acquiring a deep understanding of the fundamental properties of this system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据