4.5 Article

Control of Electron-State Coupling in Asymmetric Ge/Si-Ge Quantum Wells

期刊

PHYSICAL REVIEW APPLIED
卷 11, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.014003

关键词

-

资金

  1. European Union research and innovation program Horizon 2020 [766719 - FLASH]

向作者/读者索取更多资源

Theoretical predictions indicate that the n-type Ge/Si-Ge multi-quantum-well system is the most promising material for the realization of a Si-compatible THz quantum cascade laser operating at room temperature. To advance in this direction, we study, both experimentally and theoretically, asymmetric coupled multi-quantum-well samples based on this material system, that can be considered as the basic building block of a cascade architecture. Extensive structural characterization shows the high material quality of strain-symmetrized structures grown by chemical vapor deposition, down to the ultrathin barrier limit. Moreover, THz absorption spectroscopy measurements supported by theoretical modeling unambiguously demonstrate inter-well coupling and wavefunction tunneling. The agreement between experimental data and simulations allows us to characterize the tunneling barrier parameters and, in turn, achieve highly controlled engineering of the electronic structure in forthcoming unipolar cascade systems based on n-type Ge/Si-Ge multi-quantum-wells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据